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Motivation

For industry-scale design problems,
topology optimization is a beneficial tool
that is time and resource intensive

Large number of calls to structural solver
usually required
Each structural call is expensive,
especially for nonlinear 3D
High-Dimensional Models (HDM)

Use a Reduced-Order Model (ROM) as a
surrogate for the structural model in a
material topology optimization loop

Large speedups over HDM realized

524 MARTINS, ALONSO, AND REUTHER

Fig. 1 Elliptic vs aerostructural optimum lift distribution.

Fig. 2 Natural laminar-flow supersonic business-jet configuration.

but an objective function that reflects the overall mission of the par-
ticular aircraft. Consider, for example, the Breguet range formula
for jet-powered aircraft:

Range = V
c

CL

CD
ln Wi

W f
(1)

where V is the cruise velocity and c is the thrust-specific fuel con-
sumption of the powerplant. CL/CD is the ratio of lift to drag, and
Wi/W f is the ratio of initial and final cruise weights of the aircraft.

The Breguet range equation expresses a tradeoff between the drag
and the empty weight of the aircraft and constitutes a reasonable ob-
jective function to use in aircraft design. If we were to parameterize
a design with both aerodynamic and structural design variables and
then maximize the range for a fixed initial cruise weight, subject to
stress constraints, we would obtain a lift distribution similar to the
one shown in Fig. 1.

This optimum lift distribution trades off the drag penalty associ-
ated with unloading the tip of the wing, where the loading contributes
most to the maximum stress at the root of the wing structure in order
to reduce the weight. The end result is an increase in range when
compared to the elliptically loaded wing because of a higher weight
fraction Wi/W f . The result shown in Fig. 1 illustrates the need for
taking into account the coupling of aerodynamics and structures
when performing aircraft design.

The aircraft configuration used in this work is the supersonic
business jet shown in Fig. 2. This configuration is being developed
by the ASSET Research Corporation and is designed to achieve a
large percentage of laminar flow on the low-sweep wing, resulting
in decreased friction drag.11 The aircraft is to fly at Mach 1.5 and
have a range of 5300 miles.

Detailed mission analysis for this aircraft has determined that
one count of drag (!CD = 0.0001) is worth 310 lb of empty weight.
This means that to optimize the range of the configuration we can

minimize the objective function

I = αCD + βW (2)

where CD is the drag coefficient, W is the structural weight in
pounds, and α/β = 3.1 × 106.

We parameterize the design using an arbitrary number of shape
design variables that modify the outer-mold line (OML) of the air-
craft and structural design variables that dictate the thicknesses of
the structural elements. In this work the topology of the structure
remains unchanged, that is, the number of spars and ribs and their
planform-view location is fixed. However, the depth and thickness
of the structural members are still allowed to change with variations
of the OML.

Among the constraints to be imposed, the most obvious one is
that during cruise the lift must equal the weight of the aircraft. In our
optimization problem we constrain the CL by periodically adjusting
the angle of attack within the aerostructural solver.

We also must constrain the stresses so that the yield stress of the
material is not exceeded at a number of load conditions. There are
typically thousands of finite elements describing the structure of
the aircraft, and it can become computationally very costly to treat
these constraints separately. The reason for this high cost is that
although there are efficient ways of computing sensitivities of a few
functions with respect to many design variables and for computing
sensitivities of many functions with respect to a few design variables,
there is no known efficient method for computing sensitivities of
many functions with respect to many design variables.

For this reason we lump the individual element stresses using
Kreisselmeier–Steinhauser (KS) functions. In the limit all element
stress constraints can be lumped into a single KS function, thus
minimizing the cost of a large-scale aerostructural design cycle.
Suppose that we have the following constraint for each structural
finite element:

gm = 1 − σm/σy ≥ 0 (3)

where σm is the von Mises stress in element m and σy is the yield
stress of the material. The corresponding KS function is defined as

KS = − 1
ρ

ln
(∑

m

e−ρgm

)
(4)

This function represents a lower bound envelope of all of the con-
straint inequalities, where ρ is a positive parameter that expresses
how close this bound is to the actual minimum of the constraints.
This constraint lumping method is conservative and might not
achieve the same result as treating the constraints separately. How-
ever, the use of KS functions has been demonstrated, and it consti-
tutes a viable alternative, being effective in optimization problems
with thousands of constraints.12

Having defined our objective function, design variables, and con-
straints, we can now summarize the aircraft design optimization
problem as follows:

Minimize:

I = αCD + βW, x ∈ Rn

Subject to:

CL = CLT , KS ≥ 0, x ≥ xmin

The stress constraints in the form of KS functions must be enforced
by the optimizer for aerodynamic loads corresponding to a number
of flight and dynamic load conditions. Finally, a minimum gauge is
specified for each structural element thickness.

Analytic Sensitivity Analysis
Our main objective is to calculate the sensitivity of a multidisci-

plinary function with respect to a number of design variables. The
function of interest can be either the objective function or any of the
constraints specified in the optimization problem. In general, such
functions depend not only on the design variables, but also on the
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0-1 Material Topology Optimization

minimize
χ∈Rnel

L(u(χ),χ)

subject to c(u(χ),χ) ≤ 0

u (structural displacements) is implicitly defined as a
function of χ through the HDM equation

f int(u) = f ext

Ce = Ce0χe ρe = ρe0χe χe =

{
0, e /∈ Ω∗

1, e ∈ Ω∗

General nonlinear setting considered (geometric and
material nonlinearities)

M. J. Zahr and C. Farhat
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Projection-Based ROM
Nonlinear ROM Bottleneck
ROM Precomputations
Reduced Topology Optimization

Reduced-Order Model

Model Order Reduction (MOR) assumption
State vector lies in low-dimensional subspace defined by a
Reduced-Order Basis (ROB) Φ ∈ RN×ku

u ≈ Φy

ku � N

N equations, ku unknowns

f int(Φy) = f ext

Galerkin projection

ΦT f int(Φy) = ΦT f ext

M. J. Zahr and C. Farhat
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NL ROM Bottleneck - Internal Force

ΦT f int(Φy)= ΦT f ext

M. J. Zahr and C. Farhat
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NL ROM Bottleneck - Tangent Stiffness

ΦT f int(Φy)= ΦT f ext

M. J. Zahr and C. Farhat
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Approximation of reduced internal force, ΦT f int(Φy)

For general nonlinear problems, high-dimensional quantities
cannot be precomputed since they change at every iteration

For polynomial nonlinearities, there is an opportunity for
precomputation

Approach
Approximate fr = ΦT f int(Φy) by polynomial via Taylor
series

We choose a third-order series
Exact representation of reduced internal force for St.
Venant-Kirchhoff materials

Precompute coefficient tensors
Online operations will only involve small quantities

Remove online bottleneck
Pay price in offline phase

M. J. Zahr and C. Farhat
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Taylor Series of ΦT f int(Φy)

Consider Taylor series expansion of f r(y) = ΦT f int(Φy) about ȳ

f ri (y) ≈ f ri (ȳ) +
∂f ri
∂yj

(ȳ) · (y − ȳ)j

+
1

2

∂2f ri
∂yj∂yk

(ȳ) · (y − ȳ)j(y − ȳ)k

+
1

6

∂3f ri
∂yj∂yk∂yl

(ȳ) · (y − ȳ)j(y − ȳ)k(y − ȳ)l

M. J. Zahr and C. Farhat
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Reduced Derivatives

Reduced derivatives computable by:

Projection of full order derivatives
Directly via finite differences

αi = f ri (ȳ) = Φpif
int
p (Φȳ)

βij =
∂f ri
∂yj

(ȳ) = ΦpiΦqj

∂f intp

∂uq
(Φȳ)

γijk =
∂2f ri

∂yj∂yk
(ȳ) = ΦpiΦqjΦrk

∂f intp

∂uq∂ur
(Φȳ)

ωijkl =
∂3f ri

∂yj∂yk∂yl
(ȳ) = ΦpiΦqjΦrkΦsl

∂f intp

∂uq∂ur∂us
(Φȳ)

M. J. Zahr and C. Farhat
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Reduced internal force

Reduced internal force becomes

f ri (y) = αi + βij(y − ȳ)j

+
1

2
γijk(y − ȳ)j(y − ȳ)k

+
1

6
ωijkl(y − ȳ)j(y − ȳ)k(y − ȳ)l,

which only depends on quantities scaling with the reduced
dimension.

M. J. Zahr and C. Farhat
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Reduced internal force - material dependence

As written, the material properties for a given material are
baked into the polynomial coefficients

For notational simplicity, we consider two material
parameters: ρ (density) and η

α = α(ρ, η)

β = β(ρ, η)

γ = γ(ρ, η)

ω = ω(ρ, η)

In the context of 0-1 topology optimization, α,β,γ,ω need
to be recomputed at each new distribution of ρ, η

Extremely expensive – destroy all speedup potential

M. J. Zahr and C. Farhat
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Material Representation

Recall the material parameters are spatial distributions, i.e.
ρ = ρ(X) and η = η(X)

Define admissible distributions: {φρi }ni=1, {φ
η
i }ni=1

Require

ρ(X) = φρi (X)ξi

η(X) = φηi (X)ξi

Many possible choices admissible distributions

Here, collected via configuration snapshots

M. J. Zahr and C. Farhat
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Reduced internal force - material dependence

Suppose the coefficient matrices depend linearly on
material parameters

Can be accomplished by carefully choosing parameters
(i.e. λ, µ instead of E, ν) or linearization via Taylor series

Use material assumptions in reduced internal force

f ri (y) =
∑
a

αi (φρa,φ
η
a)ξa

+
∑
a

βij (φρa,φ
η
a)ξa(y − ȳ)j

+
1

2

∑
a

γijk (φρa,φ
η
a)ξa(y − ȳ)j(y − ȳ)k

+
1

6

∑
a

ωijkl (φ
ρ
a,φ

η
a)ξa(y − ȳ)j(y − ȳ)k(y − ȳ)l

Quantities in blue can be precomputed offline
M. J. Zahr and C. Farhat
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ROM Pre-computation Approach

ΦT f int(Φy) = ΦT f ext

Advantages

Only need to solve small, cubic nonlinear system online

Large speedups possible without hyperreduction, O(102)

Amenable to 0-1 material topology optimization

Disadvantages

Offline cost scales as O(nα · nel · k4u)

Offline storage scales as O(nα · k4u)

Online storage scales as O(k4u)

Can only vary material distribution in the subspace defined
by the material snapshot vectors

M. J. Zahr and C. Farhat
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Reduced Topology Optimization

minimize
ξ∈Rn

L̂(y(ξ), ξ)

subject to ĉ(y(ξ), ξ) ≤ 0

y is implicitly defined as a function of ξ through the ROM
equation

ΦT f int(Φy) = ΦT f ext

which can be computed efficiently

M. J. Zahr and C. Farhat
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Wing Box Design

Problem Setup

Neo-Hookean material

90,799 tetrahedral
elements

29,252 nodes, 86,493 dof

Static simulation with load
applied in 10 increments

Loads: Bending (X- and
Y- axis), Twisting,
Self-Weight

ROM size: ku = 5

NACA0012

M. J. Zahr and C. Farhat
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Wing Box Design

Problem Setup

Neo-Hookean material

90,799 tetrahedral
elements

29,252 nodes, 86,493 dof

Static simulation with load
applied in 10 increments

Loads: Bending (X- and
Y- axis), Twisting,
Self-Weight

ROM size: ku = 5

40 Ribs

M. J. Zahr and C. Farhat
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Wing Box Design

Problem Setup

Neo-Hookean material

90,799 tetrahedral
elements

29,252 nodes, 86,493 dof

Static simulation with load
applied in 10 increments

Loads: Bending (X- and
Y- axis), Twisting,
Self-Weight

ROM size: ku = 5
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Wing Box Design

Simulation Results

Single static simulation

Training for ROMs: single static simulation (with load
stepping) with all ribs

Reproductive simulation

Offline (s) Online (s) Speedup Error (%)

HDM - 674 - -

ROM 0.988 412 1.64 0.002

ROM-precomp 6,724 1.19 566 5.54

M. J. Zahr and C. Farhat
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Wing Box Design

Optimization Setup

Minimize structural weight

Constraint on maximum
vertical horizontal
displacements

41 Material Snapshots

40 possible ribs
two spars jointly

Material Snapshots

M. J. Zahr and C. Farhat
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Wing Box Design

Optimization Results
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All ribs
No ribs
Constraint Violated
Constraints Satisfied

Optimization Iterates
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Wing Box Design

Optimization Results

Deformed Configuration (Optimal Solution)

Initial Guess Optimal Solution

Structural Weight 4.67× 103 3.02× 103

Constraint Violation 0 7.10× 10−23

M. J. Zahr and C. Farhat
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Conclusion and Future Work

New method for material
topology optimization using
reduced-order models

Applicable in nonlinear
setting
O(102) speedup over HDM

Strongly enforce
manufacturability constraints

selection of material
snapshots

Address large problems

Investigate extending method
to more sophisticated topology
optimization techniques

M. J. Zahr and C. Farhat
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